Computation with encrypted data in Data Center.

Existing solution
http://

Query: Q
Salary for 1 moth
to compute the salary during the 12 mouths

$$
\begin{aligned}
& \operatorname{Dec}(k, Q)=[12, B 1, B 2] \\
& \text { sal }=12 *\left(S_{B 1}+S_{B 2}\right)
\end{aligned}
$$

$Q:[12, B 1, B 2]$
$\operatorname{Enc}(k, Q)=C_{Q}$

$$
\operatorname{Enc}(k, s a l)=C_{\text {sal }}
$$

$\operatorname{Dec}\left(k, C_{\text {sal }}\right)=s a l$

Cloud services

$$
\operatorname{Enc}(k, B 1)=C_{B 1}
$$

$$
\operatorname{EnC}(k, B 2)=C_{B 2} \xrightarrow{C_{B 1}, C_{B 2}, C_{12}}
$$

$$
\operatorname{Enc}(k, 12)=C_{12} \leftarrow C_{s}
$$ $C_{S}=C_{12} *\left(C_{B 1}+C_{B 2}\right)$

$\operatorname{Dec}\left(k, C_{s}\right)=$ sal Homomorphic encryption

$$
\text { sal }=12 *(B 1+B 2)
$$

any (algebraic) groups: $\left\langle\boldsymbol{G}, 0>,\left\langle\boldsymbol{H}, \bullet>\right.\right.$ with neutral elements $\boldsymbol{e}^{\mathbf{0}}$ and \boldsymbol{e}^{*} respectively.
Let \boldsymbol{G} and \boldsymbol{H} be any Definition. The mapping φ is named as homomorphism if for every $x, y \in G$ there exists $a, b \in \boldsymbol{H}$ such that
2. n/a01-a*

Vetinition. Ine mapping φ is namea as nomomorpnism it tor every $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{G}$ there exists $a, b \in \boldsymbol{H}$ such that

$$
\begin{equation*}
\varphi(x \circ y)=\varphi(x) \bullet \varphi(y)=a \bullet b \quad \& \quad \varphi\left(e^{0}\right)=e^{*} \tag{!}
\end{equation*}
$$

If φ is 1 -to-1 mapping then φ is named as isomorphism we denote by ϕ.
Example: $\boldsymbol{G}=\boldsymbol{Z}_{p-1}{ }^{+}=\{0,1,2, \ldots, p-2\} ;\left\langle\boldsymbol{Z}_{p-1}{ }^{+},+\bmod p-1\right\rangle ; \quad \boldsymbol{e}^{0}=0 \in \boldsymbol{Z}_{p-1}{ }^{+} ;\left|\boldsymbol{Z}_{p-1}{ }^{+}\right|=p-1$.

$$
H=Z_{p}{ }^{*}=\{1,2,3, \ldots, p-1\} ;\left\langle Z_{p}{ }^{*}, * \bmod p\right\rangle ; \quad e^{*}=1 \in Z_{p}{ }^{*} ; \quad\left|Z_{p}{ }^{*}\right|=p-1 .
$$

We define a function (mapping) ϕ providing an isomorphism $\phi: \boldsymbol{Z}_{p-1}{ }^{+} \rightarrow \boldsymbol{Z}_{p}{ }^{*}$.
Modular exponent function for generator g in $Z_{p}{ }^{*}$ is defined by equation: $a=g^{x} \bmod p$ >> mod_exp $(\mathrm{g}, \mathrm{x}, \mathrm{p})$

Fermat (little) Theorem. If p is prime, then for any integer z

$$
z^{p-1}=1 \bmod p .
$$

Comment. According to Fermat theorem and convention $\mathbf{z}^{p-1}=1 \bmod p$ and $\mathbf{z}^{0}=1$.
Then $\mathbf{0}$ is in some way equivalent to $p-1$ when we perform a computations in exponent $\bmod p$. This equivglence we can define in an unique way

$$
p-1=0 \bmod (p-1) .
$$

Indeed $(p-1) \bmod (p-1)=\mathbf{0}$ since the reminder of division of $(p-1)$ by module $(p-1)$ is equal to $\mathbf{0}$.
Corollary. For all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{Z}_{p-1}{ }^{+}$the exponent operations performed in $\boldsymbol{Z}_{\boldsymbol{p}}{ }^{*}$ in general must be performed $\bmod (p-1)$ to avoid a mistakes for more complicated expressions, e.g.
$g^{2(x+y) \bmod (p-1)} \bmod p=g^{(2 x+2 y) \bmod (p-1)} \bmod p=\left(g^{2 x \bmod (p-1)} \bmod p * g^{2 y \bmod (p-1)}\right) \bmod p$.

Let \boldsymbol{Z} be a set of positive integers $\boldsymbol{Z}=\{0,1,2,3, \ldots \infty\}$. And let $p=11$.
Integers taken mod $p-1$ are mapped to the set $\boldsymbol{Z}_{p-1}{ }^{+}=\{0,1,2, \ldots, p-2\}$.
If $p=11$, then $p-1=10$ and we obtain $Z_{10^{+}}=\{0,1,2, \ldots, 9\}$ which is an additive group $\left\langle Z_{10^{+}},+>\right.$. Interresting observation: please verify that mapping $\varphi_{\bmod 11}: \mathbf{Z} \rightarrow \mathbf{Z}_{10}{ }^{+}$is a homomorphism, where $\boldsymbol{Z}=\{0,1,2,3, \ldots \infty\}$ we are interpretting as infinite additive group of integers: $\langle\boldsymbol{Z},+>$. This result can be generalized for any mapping $\varphi_{\bmod n}: \mathbf{Z} \rightarrow Z_{n}{ }^{+}$, where \boldsymbol{n} is any finite positive integer and $\boldsymbol{Z}_{n}{ }^{+}$is and additive group with addition operation $\bmod \boldsymbol{n}$, i.e. $<\boldsymbol{Z}_{n}{ }^{+},+>$.

Let p is prime and g is a generator in $Z_{p}{ }^{*}$.
Then modular exponent function for generator g in $\boldsymbol{Z}_{p}{ }^{*}$ and defined by equation:

$$
\begin{equation*}
a=g^{x} \bmod p . \tag{!!}
\end{equation*}
$$

is a mapping $\phi: Z_{p-1}{ }^{+} \rightarrow Z_{p}{ }^{*}$.
Example. Let $p=11$ then $p-1=10$, then $\boldsymbol{Z}_{10}{ }^{+}=\{0,1,2, \ldots, 9\}$ and $\boldsymbol{Z}_{p}{ }^{*}=\{1,2,3, \ldots, 10\}$. Then the generator in in $\boldsymbol{Z}_{p}{ }^{*}$ is $g=2$. Check it.

Theorem. Function (mapping) $\phi: Z_{p-1}{ }^{+} \rightarrow Z_{p}{ }^{*}$ is an isomorphism.
Proof. $\triangleright 1$. According to Fermat theorem ϕ is 1 -to-1 mapping since $\left|Z_{p-1}{ }^{+}\right|=p-1=\left|Z_{p}{ }^{*}\right|$ and g is a

Theorem. Function (mapping) $\phi: \boldsymbol{Z}_{p-1}{ }^{+} \rightarrow \boldsymbol{Z}_{p}{ }^{*}$ is an isomorphism.
Proof. $\triangleright 1$. According to Fermat theorem ϕ is 1-to-1 mapping since $\left|Z_{p-1}{ }^{+}\right|=p-1=\left|Z_{p}{ }^{*}\right|$ and g is a generator of Z_{p}, i.e. it generates all the values in $\boldsymbol{Z}_{p}{ }^{*}$ by powering with integers in $\boldsymbol{Z}_{p-1}{ }^{+}$B bookin 鸭 deeper it is a consequence of Lagrange theorem of algebraic groups.
2. Now we prove equation (!). Taking into account that modular exponent function is defined by the generator g as a parameter we denote it by

$$
\begin{equation*}
\phi_{g}(x)=a=g^{x} \bmod p . \tag{!!!}
\end{equation*}
$$

For all $x, y \in \boldsymbol{G}=\boldsymbol{Z}_{p-1}{ }^{+}=\{0,1,2, \ldots, p-2\}$ there exists $a, b \in \boldsymbol{H}=Z_{p}{ }^{*}=\{1,2,3, \ldots, p-1\}$ such that $a=g^{x} \bmod p$ and $b=g^{y} \bmod p$.
Then the following identities takes place analogous to the identities of ordinary exponent function $\phi_{g}(x+y)=g^{x+y} \bmod p=\left(g^{x} \bmod p * g^{y} \bmod p\right) \bmod p=\phi_{g}(x) * \phi_{g}(y)=g^{x} * g^{y} \bmod p=a * b \bmod p$.

$$
\phi_{g}\left(e^{0}\right)=\phi_{g}(0)=g^{0} \bmod p=1 \bmod p=1=e^{*} \in \mathcal{L}_{p}^{*}
$$

The theorem is proved 4 .

$$
P P=(p, g)
$$

2.Key generation

- Randomly choose a private key \boldsymbol{X} with

$$
1<x<p-1
$$

- Compute $a=g^{x} \bmod p$.
- The public key is $\mathrm{PuK}=\boldsymbol{a}$.
- The private key is $\operatorname{PrK}=\boldsymbol{x}$.

Asymmetric Encryption - Decryption

$c=E n c\left(\right.$ PuK $\left._{A}, m\right)$
$\mathrm{m}=\operatorname{Dec}\left(\operatorname{PrK}_{\mathrm{A}}, \mathrm{c}\right)$

$A: \quad P u k_{A}=a \quad B:$ is able to encrypt
$\beta: r \leftarrow \operatorname{randi}\left(\mathscr{L}_{p}^{*}\right)$
$\left.E=m \cdot a^{r} \bmod p\right\} c=(E, D) \longrightarrow \mid A:$ is able to decrypt $C=(E, D)$ using bet $\operatorname{Pr} K_{A}=x$.
$(-x) \bmod (p-1)=(0-x) \bmod (p-1)=$

1. $D^{-x \bmod (p-1)}$
$=(p-1-x) \bmod (p-1)$
2. $E \cdot D^{-x} \bmod p=m$
$D^{-x} \bmod p$ computation using Fermat theorem:
If p is prime, then for any integer a holds $\boldsymbol{a}^{p-1}=1 \bmod p$.

$$
\begin{aligned}
& D^{p-1}=1 \bmod p \quad / \cdot D^{-x} \\
& D^{p-1} \cdot D^{-x}=1 \cdot D^{-x} \bmod p \Rightarrow D^{p-1-x}=D^{-x} \bmod p \\
& D^{-x} \bmod p=D^{p-1-x} \bmod p
\end{aligned}
$$

Homomosphic property of
ElGamal encryption
Let we have 2 messages m_{1}, m_{2} to be encrypted
$r_{\perp} \leftarrow \operatorname{randi}\left(\mathscr{L}_{p}^{*}\right)$
$\operatorname{Enc} c_{a}\left(r_{1}, m_{1}\right)=\left(E_{1}, D_{1}\right)=c_{1}$
$E_{1}=m_{1} \cdot a^{r_{1}} \bmod p$
$D_{1}=g^{r_{1}} \bmod p$

$$
\begin{aligned}
& r_{2} \leftarrow \operatorname{randi}\left(\mathscr{L}_{p}^{*}\right) \\
& E_{n c_{a}}\left(r_{2}, m_{2}\right)=\left(E_{2}, D_{2}\right)=c_{2} \\
& E_{2}=m_{2} \cdot a^{r_{2}^{\prime}} \bmod p \\
& D_{2}=g^{r_{2}} \bmod p
\end{aligned}
$$

Multiplicative homo rphic encryption:

Additively multiplicative encryption:
Let n_{1}, n_{2} are messages to be encrypted

$$
\left.\left.\begin{array}{l}
\operatorname{Enc} \\
\operatorname{Enc} \\
0
\end{array}\left(r_{1}, r_{1}, n_{1}\right)=c_{1}\right)=c_{2}\right\} c_{1} \cdot c_{2}=c_{12}^{\oplus}=\operatorname{Enc} c_{a}\left(r_{1}+r_{2}, n_{1}+n_{2}\right)
$$

1. App.: for confiod \& verifiable transactions
$\operatorname{Enc}\left(m_{1}+m_{2}\right)=c_{42}=c_{34}=\operatorname{Enc}\left(m_{3}+m_{4}\right)$
$C_{1} \cdot C_{2}=C_{3} \cdot C_{4} \quad$ Net verification
ElGamal-EUC: $P P=(p, g) \quad A: \operatorname{Pr} K=x ; P u k=a=q^{x} \bmod p$
$B_{1}: n_{1}=g^{m_{1}} \bmod p \rightarrow E n c_{Q}\left(r_{1}, n_{1}\right)=c_{1}=\left(E_{1}, D_{1}\right)=\left(n_{1} a^{r_{1}} \bmod p\right.$,
$\beta_{2}: n_{2}=g^{m_{2}} \bmod p \rightarrow E n c_{a}\left(r_{2}, n_{2}\right)=c_{2}=\left(E_{2}, D_{2}\right)=\left(n_{2} a^{r_{2}} \bmod p\right.$,
Net: $C_{1} \cdot C_{2}=C_{12}=\left(E_{12}, D_{12}\right)=\left(E_{1} \cdot E_{2}, D_{1} \cdot D_{2}\right)$
$E_{1,}=E_{1} \cdot E_{1}=n_{1} a^{r_{1}} \cdot n_{2} a^{r_{2}} \bmod p=n_{1} \cdot n_{2} \cdot a^{r_{1}+r_{2}} \bmod p=$

$$
\begin{gathered}
=g^{m_{1}} \cdot g^{m_{2}} \cdot a^{r_{1}+r_{2}} \bmod p=g^{m_{1}+m_{2}} \cdot a^{r_{1}+r_{2}} \bmod p \\
c_{12}=g^{m_{1}+m_{2}} \cdot a^{r_{1}+r_{2}} \bmod p
\end{gathered}
$$

$B_{1}: \quad c_{1} \quad A: \operatorname{Dec}_{x}\left(c_{1}\right)=n_{1}=g^{m_{1}} \bmod p$
$\left.\operatorname{Enc}_{a}\left(r_{11}, r_{1}\right)=c_{r_{1}}\right\} \longrightarrow$ Verifies if expected sum m_{1} corresponds to the value $n_{1}=g^{m_{1}} \bmod p$.
$\left.\begin{array}{l}B_{2}: \quad c_{1} \\ \operatorname{Enc}_{a}\left(r_{22}, r_{2}\right)=c_{r 2}\end{array}\right\} \rightarrow A:$ dos the same
A: computes $E_{12}=E_{1} \cdot E_{2}=q^{m_{1}+m_{2}} \bmod p \xrightarrow{E_{12}}$ Net
Encrypts value n_{3}
$r_{3} \leftarrow$ rand for enc. value n_{3}
$n_{3}=g^{m_{3}} \bmod p$

$$
\operatorname{Enc}_{a}\left(r_{3}, n_{3}\right)=c_{3}=\left(E_{3}, D_{3}\right)=\left(n_{3} a^{r_{3}} \bmod p, g^{r_{3}} \bmod p\right)
$$

computes $r_{4}=r_{1}+r_{2}-r_{3} \bmod (p-1) \Rightarrow r_{1}+r_{2}=r_{3}+r_{4} \bmod (p-1)$
Encrypts value n_{4}

$$
\begin{aligned}
& n_{4}=g^{m_{4}} \bmod p \\
& E_{n c_{a}}\left(r_{4}, n_{4}\right)=c_{4}=\left(E_{4}, D_{4}\right)=\left(n_{4} a^{r_{4}} \bmod p, g^{r_{4}} \bmod p\right)
\end{aligned}
$$

Declares C_{3}, C_{4} to the Net
Net verifies if $C_{1} \cdot C_{2}=C_{3} \cdot C_{4}$

Till this place

Homomorphic encryption: cloud computation with encrypted data.
Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice applications in blockchain, public procurement, auctions, gamblings and etc.
$\operatorname{Enc}\left(\right.$ Puk, $\left.\mathrm{m}_{1}+\mathrm{m}_{\mathbf{2}}\right)=\mathbf{c}_{1}{ }^{\bullet} \mathbf{c}_{\mathbf{2}}$.

