Computation with encrypted data in Data Center.

Existing solution

Query: Q Salary for 1 moth to compute the salary during the 12 mouths Q:[12,B1,B2]

Enc
$$(k, Q) = G_Q$$

Dec $(k, G_{Sal}) = Sal$

Dec(k, Q) = [12, 81, 82] $Sal = 12*(S_{R1} + S_{R2})$ Enc (k, Sal) = Csal

Cloud services

Cyl

Enc(k, B1) =
$$C_{B1}$$

Enc(k, B2) = C_{B2}
Enc(K, 12) = C_{12}
Dec(k, C_{5}) = Sal

Homomorphic encryption

Sal = 12 * (B1 + B2)

Omit this part

Let **G** and **H** be any (algebraic) groups: $\langle G, _{\circ} \rangle$, $\langle H, _{\bullet} \rangle$ with neutral elements e° and e^{*} respectively. **Definition**. The mapping φ is named as homomorphism if for every x, $y \in G$ there exists α , $\beta \in H$ such that

<u>Definition</u>. In emapping φ is named as nomomorphism if for every x, $y \in G$ there exists a, $b \in H$ such that

$$\varphi(x_0 y) = \varphi(x) \bullet \varphi(y) = a \bullet b \quad \& \quad \varphi(e^\circ) = e^*. \tag{!}$$

If φ is 1-to-1 mapping then φ is named as isomorphism we denote by φ .

Example:
$$G = Z_{p-1}^+ = \{0, 1, 2, ..., p-2\}; \langle Z_{p-1}^+, + \mod p-1 \rangle; \quad e^o = 0 \in Z_{p-1}^+; |Z_{p-1}^+| = p-1.$$

$$H = Z_p^* = \{1, 2, 3, ..., p-1\}; \langle Z_p^*, * \mod p \rangle; \qquad e^* = 1 \in Z_p^*; |Z_p^*| = p-1.$$

We define a function (mapping) $\frac{\mathbf{o}}{\mathbf{o}}$ providing an isomorphism $\frac{\mathbf{o}}{\mathbf{o}}$: $\mathbf{Z}_{p-1}^+ \to \mathbf{Z}_p^*$. Modular exponent function for generator \mathbf{g} in \mathbf{Z}_p^* is defined by equation: $\mathbf{a} = \mathbf{g}^{\mathbf{x}} \mod \mathbf{p}$ >> mod_exp(g,x,p)

<u>Fermat (little) Theorem</u>. If p is prime, then for any integer z $z^{p-1} = 1 \mod p$.

Comment. According to Fermat theorem and convention $z^{p-1} = 1 \mod p$ and $z^0 = 1$.

Then ${\bf 0}$ is in some way equivalent to ${\bf p}$ -1 when we perform a computations in exponent mod ${\bf p}$.

This equivqlence we can define in an unique way

$$p-1 = 0 \mod (p-1).$$

Indeed $(p-1) \mod (p-1) = 0$ since the reminder of division of (p-1) by module (p-1) is equal to 0.

<u>Corollary</u>. For all x, y, $z \in \mathbb{Z}_{p-1}^+$ the exponent operations performed in \mathbb{Z}_p^* in general must be performed mod (p-1) to avoid a mistakes for more complicated expressions, e.g.

 $q^{z(x+y) \mod (p-1)} \mod p = q^{(zx+zy) \mod (p-1)} \mod p = (q^{zx \mod (p-1)} \mod p * q^{zy \mod (p-1)}) \mod p.$

Let Z be a set of positive integers $Z = \{0, 1, 2, 3, ... \infty\}$. And let p = 11. Integers taken mod p - 1 are mapped to the set $Z_{p - 1}^+ = \{0, 1, 2, ..., p - 2\}$. If p = 11, then p - 1 = 10 and we obtain $Z_{10}^+ = \{0, 1, 2, ..., 9\}$ which is an additive group $\langle Z_{10}^+, + \rangle$. Interresting observation: please verify that mapping $\phi_{\text{mod } 11} : Z \to Z_{10}^+$ is a homomorphism, where $Z = \{0, 1, 2, 3, ... \infty\}$ we are interpretting as infinite additive group of integers: $\langle Z, + \rangle$. This result can be generalized for any mapping $\phi_{\text{mod } n} : Z \to Z_n^+$, where n is any finite positive integer and Z_n^+ is and additive group with addition operation mod n, i.e. $\langle Z_n^+, + \rangle$.

Let p is prime and g is a generator in Z_p^* .

Then modular exponent function for generator g in Z_p^* and defined by equation:

$$a = g^{x} \bmod p. \tag{!!}$$

is a mapping $\phi: Z_{p-1}^+ \to Z_p^*$.

Example. Let p=11 then p-1=10, then $Z_{10}^+ = \{0, 1, 2, ..., 9\}$ and $Z_p^* = \{1, 2, 3, ..., 10\}$. Then the generator in Z_p^* is g=2. Check it.

Theorem. Function (mapping) $\phi: \mathbb{Z}_{p-1}^+ \to \mathbb{Z}_p^*$ is an isomorphism.

Proof. \triangleright 1. According to Fermat theorem ϕ is 1-to-1 mapping since $|Z_{p-1}^+| = p-1 = |Z_p^*|$ and g is a

Theorem. Function (mapping) $\phi: \mathbb{Z}_{p-1}^+ \to \mathbb{Z}_p^*$ is an isomorphism.

Proof. ightharpoonup 1. According to Fermat theorem ϕ is 1-to-1 mapping since $|Z_{p-1}^+| = p-1 = |Z_p^*|$ and g is a generator of Z_p^* , i.e. it generates all the values in Z_p^* by powering with integers in Z_{p-1}^+ . Looking deeper it is a consequence of Lagrange theorem of algebraic groups.

2. Now we prove equation (!). Taking into account that modular exponent function is defined by the generator g as a parameter we denote it by

$$\phi_g(\mathbf{x}) = \mathbf{a} = \mathbf{g}^{\mathbf{x}} \bmod \mathbf{p}. \tag{!!!}$$

For all x, $y \in G = Z_{p-1}^+ = \{0, 1, 2, ..., p-2\}$ there exists a, $b \in H = Z_p^* = \{1, 2, 3, ..., p-1\}$ such that $a = g^x \mod p$ and $b = g^y \mod p$.

Then the following identities takes place analogous to the identities of ordinary exponent function $\phi_g(x+y) = g^{x+y} \mod p = (g^x \mod p * g^y \mod p) \mod p = \phi_g(x) * \phi_g(y) = g^x * g^y \mod p = a * b \mod p$.

$$\phi_g(e^\circ) = \phi_g(0) = g^\circ \mod p = 1 \mod p = 1 = e^* \in \mathcal{Z}_p^*$$

The theorem is proved $\overline{}$.

$$PP = (P, g)$$

2. Key generation

- Randomly choose a private key X with
 1 < x < p − 1.
- Compute $a = g^x \mod p$.
- The public key is PuK = a.
- The private key is PrK = x.

Asymmetric Encryption - Decryption

c=Enc(PuK_A, m) m=Dec(PrK_A, c)

A:
$$Puk_A = \alpha$$

B: is able to energpt $m \text{ to } \Omega$: $m < p$

B: $r \leftarrow randi(\mathcal{I}_p^*)$
 $E = m \cdot Q^r \mod p$
 $C = (E, D) \longrightarrow C = (E, D) \text{ wing ber } Pk = X.$
 $C = (E, D) \mod p$
 $C = (E, D) \mod p$

D^{-x} mod p computation using Fermat theorem: If p is prime, then for any integer a holds $a^{p-1} = 1 \mod p$.

$$D^{P-1} = 1 \mod P \qquad / \bullet D^{-x}$$

$$D^{P-1} \cdot D^{-x} = 1 \cdot D^{-x} \mod P \implies D^{P-1-x} = D^{-x} \mod P$$

$$D^{-x} \mod P = D^{P-1-x} \mod P$$

Homomorphic property of Elbamal encryption

Let we have 2 messages
$$m_1$$
, m_2 to be encrypted $r_1 \leftarrow randi(\mathcal{Z}_p^*)$ $r_2 \leftarrow randi(\mathcal{Z}_p^*)$
 $Enc_{\alpha}(r_1, m_1) = (E_1, D_1) = c_1$ $Enc_{\alpha}(r_2, m_2) = (E_2, D_2) = c_2$
 $E_1 = m_1 \cdot \alpha^{r_1} \mod p$ $E_2 = m_2 \cdot \alpha^{r_2} \mod p$
 $D_1 = g^{r_1} \mod p$ $D_2 = g^{r_2} \mod p$

Multiplicative homo rphic encryption:

 $Enc_{\alpha}(r_1, r_2, m_1 \cdot m_2) = Enc_{\alpha}(r_1, r_2) \cdot Enc_{\alpha}(r_2, r_2)$
 $C_{12} = C_1 \cdot C_2$

$$(E_{12}, D_{12}) = (E_{1}, D_{1}) \cdot (E_{2} \cdot D_{2})$$

$$(E_{1} \cdot E_{2}, D_{1} \cdot D_{2})$$

$$(m_{1} \cdot m_{2} \cdot \alpha^{r_{1} + r_{2}'} \mod p, g^{r_{1} + r_{2}'} \mod p) \cdot (m_{1} \alpha^{r_{1}} \mod p, g^{r_{2}} \mod p) \cdot (m_{2} \alpha^{r_{2}} \mod p, g^{r_{2}} \mod p)$$

Additively multiplicative encryption:

Let n1, n2 are messages to be encrypted

$$Enc_{\alpha}(\Gamma_{1}, N_{1}) = c_{1}$$

 $Enc_{\alpha}(\Gamma_{2}, N_{2}) = c_{2}$ $c_{1} \cdot c_{2} = c_{12}^{+} = Enc_{\alpha}(\Gamma_{1} + \Gamma_{2}, N_{1} + N_{2})$

1. App.: for confid & verifiable transactions

$$B_1: M_1 \xrightarrow{2000} R \xrightarrow{B_3} M_3$$
 $m_1 + M_2 = M_3 + M_4 = 5000$
 $B_2: M_2 \xrightarrow{3000} T_X 1 \xrightarrow{4000} m_4$

$$Enc(m_1 + m_2) = c_{12} = c_{34} = Enc(m_3 + m_4)$$

$$B_1: n_1 = g^{m_1} \mod p \longrightarrow Enc_a(r_1, n_1) = c_1 - (E_1, D_1) = (n_1 a^2 \mod p)$$

$$\mathcal{B}_2: N_2 = g^{M_2} \mod p \longrightarrow \operatorname{Enc}_{q}(\Gamma_2, N_2) = c_2 = (\mathcal{F}_2, D_2) = (N_2 \alpha^{\Gamma_2} \mod P)$$

Net:
$$C_1 \cdot C_2 = C_{12} = (E_{12}, D_{12}) = (E_1 \cdot E_2, D_1 \cdot D_2)$$

$$E_{1}$$
 = $E_{1} \cdot E_{2} = n_{1} \alpha^{r_{1}} \cdot n_{2} \alpha^{r_{2}} \mod p = n_{1} \cdot n_{2} \alpha^{r_{1}} + r_{2} \mod p =$

$$=g^{m_1}g^{m_2}q^{r_2+r_2} \mod p = g^{m_1+m_2} \cdot q^{r_1+r_2} \mod p$$

$$C_{12} = g^{m_1+m_2} \cdot q^{r_1+r_2} \mod p$$

$$B_4: \qquad ft: \operatorname{Dec}_{\mathbf{x}}(c_1) = n_1 = g^{m_1} \mod p$$

$$\operatorname{Enc}_{0}(r_1, r_1) = C_{r_1} \qquad \operatorname{Verifics} \text{ if expected sum } m_1 \text{ corresponds to the value } n_1 = g^{m_2} \mod p.$$

$$B_2: \qquad c_1 \longrightarrow ft: \text{ dos the same}$$

$$\operatorname{Enc}_{\mathbf{q}}(r_{22}, r_2) = c_{r_2} \longrightarrow ft: \text{ dos the same}$$

$$f: \operatorname{computes} F_{12} = F_1 \cdot F_2 = g^{m_1+m_2} \mod p \xrightarrow{F_{12}} \operatorname{Net}$$

$$\operatorname{Enc}_{\mathbf{q}}(r_2, r_2) = c_{r_2} \longrightarrow \operatorname{Net}$$

$$\operatorname{Enc}_{\mathbf{q}}(r_3, r_3) = c_3 = (F_3, F_3) = (r_3 \cdot q^{r_3} \mod p, g^{r_3} \mod p)$$

$$\operatorname{computes} r_4 = r_1 + r_2 - r_3 \mod (p-1) \longrightarrow r_1 + r_2 = r_3 + r_4 \mod p$$

$$\operatorname{Enc}_{\mathbf{q}}(r_4, r_4) = c_4 = (F_4, F_4) = (n_4 \cdot q^{r_4} \mod p, g^{r_4} \mod p)$$

$$\operatorname{Enc}_{\mathbf{q}}(r_4, r_4) = c_4 = (F_4, F_4) = (n_4 \cdot q^{r_4} \mod p, g^{r_4} \mod p)$$

$$\operatorname{Declates} C_3 \cap c_4 \text{ to the } \operatorname{Net}$$

$$\operatorname{Net} \operatorname{Verifies} \text{ if } C_1 \cdot C_2 = c_3 \cdot c_4$$

$$\operatorname{Till this place}$$

Homomorphic encryption: cloud computation with encrypted data.

Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice applications in blockchain, public procurement, auctions, gamblings and etc.

